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Riemannian medians and means with applications
to radar signal processing

Marc Arnaudon, Frédéric Barbaresco and Le Yang

Abstract— We develop a new geometric approach for
high resolution Doppler processing based on the Rieman-
nian geometry of Toeplitz covariance matrices and the
notion of Riemannian p-means. This paper summarizes
briefly our recent work in this direction. First of all, we
introduce radar data and the problem of target detection.
Then we show how to transform the original radar data
into Toeplitz covariance matrices. After that, we give our
results on the Riemannian geometry of Toeplitz covariance
matrices. In order to compute p-means in practical cases,
we propose deterministic and stochastic algorithms, of
which the convergence results are given, as well as the rate
of convergence and error estimates. Finally, we propose a
new detector based on Riemannian median and show its
advantage over the existing processing methods.

Index Terms— median, mean, Toeplitz covariance ma-
trices, radar signal processing, Riemannian manifold

I. INTRODUCTION

In recent years, it becomes more and more im-
portant to improve the detection performance of PD
(Pulsed Doppler) radar in perturbed environment and
with smaller bunch of pulses. However, the classical FFT
(Fast Fourier Transform) based CFAR (Constant False
Alarm Rate) detection procedures (see e.g. [23]) are
not very satisfactory due to their low resolution issues.
In order to overcome these drawbacks we propose in
this paper a new CFAR detection procedure based on
nonlinear statistics of radar Toeplitz covariance matrices.

Before explaining our main idea, we briefly introduce
the radar data which we intend to analyze and the
problem of target detection. For simplicity, we only
consider one fixed direction in which a radar sends radio
waves and we subdivide this direction into a number of
cells. The radar sends each time a gust of radio waves in
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this direction and then receive echoes. For each echo we
measure its amplituder and phaseϕ, so that it can be
represented by a complex numberreiϕ. As a result, the
original radar observation value of each cell is a complex
vector z = (z0, . . . , zn−1), where n is the number of
radio waves emitted in each gust. Intuitively, a target is
an object whose behavior on reflectivity or speed is very
different from its environment. Now the aim of target
detection is to know, according to the above observation
values, whether there are targets at the locations of some
cells in the fixed direction.

The fundamental difference between our detection
method and the classical FFT-CFAR method (see e.g.
[23]) is that, instead of using directly the original
observation valuez of each cell, we regard it as a
realization of a centered stationary Gaussian process and
identify it with its covariance matrixRn = E[zz̄]. In
other words, the new observation value for each cell
is a covariance matrix, which is also Toeplitz due to
the stationarity of the process. Then our new detection
procedure can be formulated as follows (see Fig.1): for
each cell under test, we compute the distance between
the covariance matrix of the cell and the average matrix
of the covariance matrices of the reference cells around
the cell, if this distance is greater than some threshold,
then we can conclude that there is a target at the location
of the cell under test.

Fig. 1. New detection procedure.

In order to achieve this new detection method, there
are three fundamental issues should be addressed. The
first one is how to construct Toeplitz covariance matrices
from the original radar observation values, the second
one is how to measure the distance between two Toeplitz
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covariance matrices and the third one is how to define
the average matrix of Toeplitz covariance matrices and
how to compute it. The first question will be answered
in Section II through autoregressive models, the second
one will be answered in Section III by giving Toeplitz
covariance matrices a Riemannian structure and last one
will be answered in Section IV by studying thep-means
of probability measures on Riemannian manifolds. Fi-
nally, it will be shown in Section V that, as far as radar
target detection is concerned, the median matrix (i.e.
p = 1) is the most advisable choice for the average
matrix of reference cells and this choice leads to a
new OS-HDR-CFAR detector, whose advantage will be
illustrated through numerical experiments.

II. TOEPLITZ COVARIANCE MATRICES AS RADAR

OBSERVATION VALUES

In this section, we show how to transform the original
radar data into Toeplitz covariance matrices via reflection
coefficients, for which an estimation method is also
given. More details can be found in [12], [13] and [27].

A. Toeplitz covariance matrices parameterized by reflec-
tion coefficients via autoregressive model

As stated in Section I, the original observation value
of each radar cell is a complex vectorz = (z0, . . . , zn−1)
which is assumed to be a realization of a centered station-
ary Gaussian processZ = (Z0, . . . , Zn−1). Moreover,
we assume that the covariance matrix

Rn = E[ZZ∗] =











r0 r1 . . . rn−1

r1 r0 . . . rn−2
...

. . . . . .
...

rn−1 . . . r1 r0











is strictly positive definite, whererk = E[Z0Z̄k ]. Now
for 1 ≤ k ≤ l ≤ n − 1, the k-th order autoregressive
estimate ofZl is given byẐl = −∑k

j=1 a
(k)
j Zl−j , where

the autoregressive coefficientsa(k)
1 , . . . , a

(k)
k are chosen

such that the mean squared errorPk = E|Zl − Ẑl|2
is minimized. The last autoregressive coefficienta

(k)
k is

called thek-th reflection coefficientand is denoted byµk.
Observe that the classical Levinson’s recursion (see e.g.
[24]) yields |µk| < 1, hence we obtain a map between
two open submanifolds ofR2n−1:

ϕ : Tn −→ R
∗
+×D

n−1, Rn 7−→ (r0, µ1, . . . , µn−1),

whereTn is the manifold of Toeplitz Hermitian positive
definite matrices of ordern andD = {ζ ∈ C : |ζ| < 1}
is the open unit disk of the complex plane.

Using the Cramer’s rule and the method of Schur com-
plement we can show thatϕ is a diffeomorphism. More

precisely, letRk be thek-th order principle submatrix
of Rn, then the explicit expression ofϕ is given by

µk = (−1)k
detSk

detRk
, whereSk = Rk+1

(

2, . . . , k + 1

1, . . . , k

)

is the submatrix ofRk+1 obtained by deleting the
first row and the last column. On the other hand, if
(P0, µ1, . . . , µn−1) ∈ R

∗
+×D

n−1, then its inverse image
Rn underϕ can be calculated by the following algorithm:

r0 = P0, r1 = −P0µ1,

rk = −µkPk−1+αT
k−1Jk−1R

−1
k−1αk−1, 2 ≤ k ≤ n−1,

where

αk−1 =







r1
...

rk−1






, Jk−1 =









0 . . . 0 1
0 . . . 1 0

. . .
1 . . . 0 0









,

and

Pk−1 = P0

k−1
∏

i=1

(1 − |µi|2). (1)

Since ϕ is a diffeomorphism, the covariance matrix
can be parameterized by reflection coefficients, which
has a crucial advantage that, under this reparametriza-
tion, the Riemannian metric that we will give toTn

is diagonal. This means that the Riemannian distances
and geodesics admit simple closed form formulae, which
make our algorithms for computingp-means applicable.
Consequently, instead of estimating the covariance ma-
trix Rn, it suffices to estimate the reflection coefficients
(r0, µ1, . . . , µn−1) according to the original radar ob-
servation value(z0, . . . , zn−1). This can be achieved by
using the regularized Burg algorithm, to which we now
turn.

B. Reflection coefficients estimation by regularized Burg
algorithm

The regularized Burg algorithm (see [10] and [11])
is an alternative Bayesian composite model approach to
spectral estimation. The reflection coefficients, defined
in the classical Burg algorithm are estimated through
a regularized method, based on a Bayesian adaptive
spectrum estimation technique, proposed by Kitagawa
and Gersch, who use normal prior distributions ex-
pressing a smoothness priors on the solution.With these
priors, autoregressive spectrum analysis is reduced to a
constrained least squares problem, minimized for fixed
tradeoff parameters, using Levinson recursion between
autoregressive parameters. Then, a reflection coefficient
is calculated, for each autoregressive model order, by
minimizing the sum of the mean-squared values of the
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forward and backward prediction errors, with spectral
smoothness constraints. Tradeoff parameters balance es-
timate of the autoregressive coefficients between infi-
delity to the data and infidelity to the frequency domain
smoothness constraint. This algorithm conserves lattice
structure advantages, and could be brought in widespread
use with a multi-segment regularized reflection coef-
ficient version. The regularized Burg algorithm lattice
structure offers implementation advantages over tapped
delay line filters because they suffer from less round-off
noise and less sensitivity to coefficient value perturba-
tions.

We briefly summarize the regularized Burg algorithm
as follows:
Initialization:

f
(k)
0 = b

(k)
0 = zk, k = 0, . . . , n − 1;

P0 =
1

n

n−1
∑

k=0

|zk|2 and a
(0)
0 = 1.

Iteration: for i = 1, . . . , n − 1,

µi = −
(

2

n − i

n
∑

k=i+1

f
(k)
i−1b̄

(k−1)
i−1 + 2

i−1
∑

k=1

β
(i)
k a

(i−1)
k a

(i−1)
i−k

)

/(

1

n − i

n
∑

k=i+1

|f (k)
i−1|2 + |b(k−1)

i−1 |2 + 2
i−1
∑

k=0

β
(i)
k |a(i−1)

k |2
)

.

where

β
(i)
k = γ1(2π)2(k − i)2,











a
(i)
0 = 1,

a
(i)
k = a

(i−1)
k + µiā

(i−1)
i−k , k = 1, . . . , i − 1,

a
(i)
i = µi,

and
{

f
(k)
i = f

(k)
i−1 + µib

k−1
i−1 ,

b
(k)
i = b

(k−1)
i−1 + µ̄if

k
i−1.

Thanks to the above regularized Burg algorithm, we
can easily estimate the reflection coefficients of every
radar cell according to the original radar observation
values.

C. Visualization of autoregressive spectra

As another important application of the regularized
Burg algorithm, we proceed to show how to apply it to
visualize the autoregressive spectra, which are closely
related to the speed of targets. According previous anal-
ysis, we have in fact for each radar cell an autoregressive
model of ordern−1 and the regularized Burg algorithm
allows us to determine not only the reflection coefficients

(P0, µ1, . . . , µn−1), but also the autoregressive coeffi-
cients (a

(n−1)
1 , . . . , a

(n−1)
n−1 ), and the last mean squared

error Pn−1 follows easily by (1). Hence the power
spectral density function of the autoregressive model is
explicitly given by

S(f) =
Pn−1

∣

∣1 − ∑n−1
k=1 a

(n−1)
k e−2iπkf

∣

∣

2
, f ∈ [−1

2
,
1

2
].

(2)
For later usage, we continue to give an example of
spectra visualization. To this end, we fix a direction and
subdivide its range into 200 cells, in which we insert
two targets. For each cell, we simulate an autoregressive
process of order7 and regard it as the echo of the cell.
As a result, the original radar observation value of each
cell is a complex vector(z0, . . . , z7). Then according
to previous analysis, for each cell we have a spectral
function given by (2), all these functions are visualized in
Fig. 2, where thex axis represents the cells and they axis
represents the frequencyf in (2), the spectra function
S(·) of each cell corresponds to a colored vertical line
and the valueS(f) for a specified frequency is indicated
by the colorimetric on the right.

Fig. 2. Initial spectra of simulated data.

III. R IEMANNIAN GEOMETRY OF TOEPLITZ

COVARIANCE MATRICES

Thanks to the reflection coefficients, we can regard
Tn as a Riemannian manifold whose metric, which is
introduced in [13] through the Hessian of the Kähler
potential

Φ(Rn) = − ln(det Rn),

is given by

ds2 = n
dP 2

0

P 2
0

+

n−1
∑

k=1

(n − k)
|dµk|2

(1 − |µk|2)2
, (3)
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where(P0, µ1, . . . , µn−1) = ϕ(Rn).
This metric is a Bergman type metric and it is shown

in [27] that this metric is not equal to the Fisher
information metric of Tn. But J. Burbea and C. R.
Rao have proved in [20, Theorem 2] that the Bergman
metric and the Fisher information metric do coincide for
some probability density functions of particular forms. A
similar potential function was used by S. Amari in [3] to
derive the Riemannian metric of multi-variate Gaussian
distributions by means of divergence functions.

With the metric (3) the spaceR∗
+ × D

n−1 is just
the product of the Riemannian manifolds(R∗

+, ds2
0) and

(D, ds2
k)1≤k≤n−1, where

ds2
0 = n

dP 2
0

P 2
0

and ds2
k = (n − k)

|dµk|2
(1 − |µk|2)2

.

The latter is justn − k times the classical Poincaré
metric of D. Hence (R∗

+ × D
n−1, ds2) is a Cartan-

Hadamard manifold whose sectional curvaturesK verify
−4 ≤ K ≤ 0. The Riemannian distance between two
different pointsx andy in R

∗
+ ×D

n−1 is given by

d(x, y) =

(

nσ(P,Q)2 +

n−1
∑

k=1

(n − k)τ(µk, νk)
2

)1/2

,

wherex = (P, µ1, . . . , µn−1), y = (Q, ν1, . . . , νn−1),

σ(P,Q) = | ln(
Q

P
)| andτ(µk, νk) =

1

2
ln

1 + | νk−µk

1−µ̄kνk
|

1 − | νk−µk

1−µ̄kνk
|
.

The geodesic fromx to y in Tn parameterized by arc
length is given by

γ(s, x, y) =

(

γ0(
σ(P,Q)

d(x, y)
s), γ1(

τ(µ1, ν1)

d(x, y)
s), . . . ,

γn−1(
τ(µn−1, νn−1)

d(x, y)
s)

)

,

whereγ0(t) = Pet sign(Q−P ) and for1 ≤ k ≤ n − 1,

γk(t) =
(µk + eiθk)e2t + (µk − eiθk)

(1 + µ̄keiθk)e2t + (1 − µ̄keiθk)
,

with θk = arg νk−µk

1−µ̄kνk
.

IV. D ETERMINISTIC AND STOCHASTIC ALGORITHMS

FOR COMPUTINGRIEMANNIAN p-MEANS

This section is devoted to introducing the notion
of Riemannianp-means. The existence and uniqueness
results are given. Deterministic and stochastic algorithms
for computingp-means are developed and are tested by
examples. The rate of convergence and error estimates
are also obtained. More details can be found in [5] and
[27].

A. Riemannianp-means

Let M be a Riemannian manifold whose sectional
curvaturesK(σ) verify −β2 ≤ K(σ) ≤ α2, where
α, β are positive numbers. Denote byρ the Riemannian
distance onM . Let B(a, r) be an open geodesic ball in
M andµ be a probability measure with support included
in B(a, r). Fix p ∈ [1,∞). We will always make the
following assumptions on(r, p, µ): the support ofµ is
not reduced to one point. Eitherp > 1 or the support of
µ is not contained in a line. The radiusr satisfies

r < rα,p =

{

1
2 min

{

inj(M), π
2α

}

, if 1 ≤ p < 2;
1
2 min

{

inj(M), π
α

}

, if p ≥ 2,
,

whereinj(M) is the injectivity radius ofM .
It has been proved in [1, Theorem 2.1] that the

function

Hp : M −→ R+

x 7−→
∫

M
ρp(x, y)µ(dy)

has a unique global minimizerep in M , the p-meanof
µ, and moreoverep ∈ B(a, r). Particularly,e1 and e2

are themedianand themeanof µ, respectively.
Remark:Whenµ is not necessarily compactly supported,
the almost sure uniqueness ofp-means whenp ≥ 1 is
proved in [9]. Moreover, to our knowledge, the most
precise result on the existence of a Fréchet mean on the
circle is given in [21].
Remark:The existence and uniqueness ofp-means in
Finsler geometry are proved in [7], where algorithms
for computingp-means in Finslerian case are also de-
veloped.
Remark:We do not consider the circum-centere∞ of µ
in this paper. Nevertheless, interested readers can find in
[6] a simple deterministic algorithm for computing the
circum-centers of probability measures in Riemannian
manifolds.

In order to give the characterizations ofp-means, for
everyx ∈ B(a, r), we define

Gp(x) =



























∫

M\{x}

− exp−1
x y

ρ(x, y)
µ(dy), if p = 1;

p

∫

M
ρp−1(x, y)

− exp−1
x y

ρ(x, y)
µ(dy), if p > 1.

It is easily seen that ifp > 1, thenGp(x) is simply the
gradientvector ofHp atx andep is the unique pointx ∈
B(a, r) such thatGp(x) = 0x. The casep = 1 deserves
a little more explanation. In this case, ifµ{x} > 0, then
the gradient ofy 7→ ρ(x, y) is not well defined atx, so
that we eliminatex from the integration domain ofH1
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and then take the gradient atx. This yields the vector
G1(x), which is asubgradientof H1 at x. If µ{x} = 0,
then the gradient ofH1 is well defined atx and coincides
with G1(x) and this holds particularly whenx does not
belong to the support ofµ. It is shown in [25] thate1 is
the unique pointx ∈ B(a, r) such that|G1(x)| ≤ µ{x}.

B. Deterministic algorithms for computingp-means

The deterministic algorithms for computingp-means
that we are going to present are essentially gradient
descent type procedures. To begin with, we choose a
sequence of stepsizes(tk)k≥0 such that

0 < tk < T1(ε, β, r, p), lim
k→∞

tk = 0 and
∞
∑

k=0

tk = ∞,

where the constant

T1(ε, β, r, p) = pεp(πp2(2r)2p−1β coth(2βr)+pεp−1)−1,

with ε = ρ(suppµ, ∂B(a, r))/2.
After that, let x0 ∈ B(a, r) be an arbitrary starting

point and define

xk+1 = expxk
(−tkG(xk)), k ≥ 0.

Then the sequence(xk)k≥0 converges toep.
We proceed to give some heuristics of the above

algorithm. In Fig. 3 below,µ is supported by four data
pointsy1, y2, y3 andy4, with possibly different weights.
In order to compute thep-mean ofµ, we start from some
point x0 and compute the weighted sum of the four unit
tangent vectors (black arrows) inTx0

M pointing to the
data points. This gives us the tangent vector−Gp(x0).
Then we go along the geodesic (blue line) stating from
x0 with velocity −Gp(x0) for a t0 time to arrive at the
next iteration pointx1. We repeat this procedure and
finally we will arrive atep.

Fig. 3. Deterministic algorithms for computingp-means.

Now we give an example of the above algorithm
applied to median computation in the Poincaré disk. In
Fig. 4, µ is supported by the three blue points with
equal weight and the red point stands for the iteration
sequencexk. The starting state is at the top left and the
end state is at the bottom right. The top right and bottom
left pictures are two intermediate states of the iteration
process. Finally, the red point converges to the median
of the three blue points.

Fig. 4. Median computation by subgradient algorithm in the Poincaré
disk.

Before giving the error estimates of the above deter-
ministic algorithms, we give a little explanation on a
constant which will be involved in our presentation. It
is shown in [5] and [25] that there exists some constant
Cp,µ > 0 such that for everyx ∈ B(a, r),

Hp(x) − Hp(ep) ≥
Cp,µ

2
ρ2(x, ep).

Moreover, for the case when1 < p ≤ 2, we can choose
Cp,µ = p(2r)p−2 min(p − 1, 2αr cot(2αr)). But if p =
1 or p > 2, then Cp,µ maybe depend on the shape of
suppµ and one can only determineCp,µ according to
concrete cases.

Now the error estimates can be summarized as fol-
lows: assumetk < C−1

p,µ holds for everyk, then the
following error estimations hold:
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i) if 1 ≤ p < 2, then fork ≥ 1,

ρ2(xk, ep) ≤ 4r2
k−1
∏

i=0

(1 − Cp,µti)

+ C(β, r, p)

( k−1
∑

j=1

t2j−1

k−1
∏

i=j

(1 − Cp,µti) + t2k−1

)

:= bk;

ii) if p ≥ 2, then fork ≥ 1,

Hp(xk) − Hp(ep) ≤ (2r)p
k−1
∏

i=0

(1 − Cp,µti)

+ C(β, r, p)

( k−1
∑

j=1

t2j−1

k−1
∏

i=j

(1 − Cp,µti) + t2k−1

)

:= ck,

where the constantC(β, r, p)

=

{

p2(2r)2p−1β coth(2βr), if 1 < p < 2;

p3(2r)3p−4 (2βr coth(2βr) + p − 2) , if p ≥ 2.

Moreover, the sequences(bk)k and (ck)k both tend to
zero whenk tends to infinity.
Remark: It is shown in [27] that if the stepsizes are
chosen to be a multiple of harmonic series, then the
convergence rate of the above algorithm is at least
sublinear. For example, iftk = c(k+1)−1 with c > C−1

p,µ,
then for1 ≤ p ≤ 2 we haveρ2(xk, ep) = O(k−1).

C. Stochastic algorithms for computingp-means

We continue to introduce the stochastic gradient de-
scent algorithms for computingp-means. As before, we
start by choosing a sequence of stepsizes(tk)k≥1 such
that

0 < tk < T2(ε, p, r, µ),

∞
∑

k=1

tk = ∞ and
∞
∑

k=1

t2k < ∞,

where the constant

T2(ε, p, r, µ) = min(C−1
p,µ, ε(2r)1−pp−1).

Now let (Pk)k≥1 be a sequence of independent
B(a, r)-valued random variables with the same lawµ
andx0 ∈ B(a, r−ε) be an arbitrary initial point, then we
define inductively a random walk(Xk)k≥0 by X0 = x0

and

Xk+1 = expXk

(

−tk+1 gradXk
Fp(·, Pk+1)

)

, k ≥ 0,

where Fp(x, y) = ρp(x, y), with the convention
gradx Fp(·, x) = 0. Then the random walk(Xk)k≥0

converges inL2 and almost surely toep.
As before, we give some heuristics of the above

stochastic algorithm. In Fig. 5 below,µ is supported
by four data pointsy1, y2, y3 and y4, with possibly

different weights. In order to compute thep-mean of
µ, we start from some pointX0 and randomly choose
a point according to the lawµ, assumey2 is chosen,
then after going along the geodesic joiningX0 and y2

(dashed line) for a distancet1pρp−1(X0, y2) we arrive at
X1. Similarly, we randomly choose for the second time
another point according to the lawµ and assume this
time y4 is chosen, then after going along the geodesic
joining X1 and y4 for a distancet2pρp−1(X1, y4) we
arrive atX2. By repeating this procedure, we will arrive
at ep almost surely.

Fig. 5. Stochastic algorithms for computingp-means.

The following example focuses on the caseM = R
d

andp = 2, where drastic simplifications occur. Assume
M = R

d and µ is a compactly supported probability
measure onRd, the above stochastic gradient algorithm
simplifies intoX0 = x0 and fork ≥ 0,

Xk+1 = Xk − tk+1 gradXk
Fp(·, Pk+1). (4)

If furthermore p = 2, then clearlye2 = E[P1] and
gradx Fp(·, y) = 2(x − y). As a result, (4) becomes

Xk+1 = (1 − 2tk+1)Xk + 2tk+1Pk+1.

Then easy induction yields fork ≥ 1,

Xk = x0

k−1
∏

j=0

(1−2tk−j)+2

k−1
∑

j=0

Pk−jtk−j

j−1
∏

ℓ=0

(1−2tk−ℓ).

Now, takingtk =
1

2k
, we have

k−1
∏

j=0

(1 − 2tk−j) = 0 and
j−1
∏

ℓ=0

(1 − 2tk−ℓ) =
k − j

k

so that

Xk =
k−1
∑

j=0

Pk−j
1

k
=

1

k

k
∑

j=1

Pj .
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The stochastic gradient algorithm estimating the meane2

of µ is given by the empirical mean of a growing sample
of independent random variables with distributionµ. In
this simple case, our convergence result is nothing but
the Strong Law of Large Numbers.

Now we give an example of the above stochastic
algorithm applied to median computation in the Poincaré
disk. In Fig. 6,µ is supported by the three blue points
with equal weight. The black point stands for the state
of the inhomogeneous Markov chain(Xk)k≥0 and the
red path represents one of its trajectory. The green
point is the median of the blue points computed by the
subgradient algorithm in the preceding subsection. The
starting state is at the top left and the end state is at the
bottom right. The top right and bottom left pictures are
two intermediate states of the iteration process. Finally,
the black point converges to the green point.

Fig. 6. Median computation by stochastic gradient algorithm in the
Poincaré disk.

We end this section by showing another example
of the stochastic gradient algorithm applied to median
computation. In Fig. 8,M is the Euclidean planeR2

andµ is an absolutely continuous law with density given
in Fig. 7. The red path represents one trajectory of the
inhomogeneous Markov chain(Xk)k≥0 corresponding to
p = 1, with linear interpolation between the different
steps. The red point ise1. White blobs represent the
values of(Pk)k≥1.

It is well known that the convergence rate of the law
of large numbers is given by the central limit theorem.
This is also the case for our stochastic gradient descent
algorithm. Now we turn to a central limit theorem which

Fig. 7. Density function on the square[−2, 2] × [−2, 2].

Fig. 8. Median computation by stochastic gradient algorithm on the
square[−2, 2] × [−2, 2]

gives the convergence speed of our stochastic gradient
descent algorithm.

For everyk ≥ 1, let tk = min(δ/k, T2(ε, p, r, µ)) for
someδ > C−1

p,µ. Since the exponential map atep is a
diffeomorphism ontoB(a, r), we can define for every
n ≥ 1 a Markov chain(Y n

k )k≥0 in Tep
M by

Y n
k =

k√
n

exp−1
ep

Xk.

AssumeHp is C2 in a neighborhood ofep, then the

sequence of processes
(

Y n
[nt]

)

t≥0
converges weakly in

D((0,∞), Tep
M) to a diffusion process given by

yδ(t) =
d

∑

i=1

t1−δλi

∫ t

0
sδλi−1〈δσ dBs, ei〉ei, t ≥ 0,

whereBt is the standard Brownian motion inTep
M and

σ ∈ End(Tep
M) satisfying

σσ∗ = E

[

gradep
Fp(·, P1) ⊗ gradep

Fp(·, P1)
]

,
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(ei)1≤i≤d is an orthonormal basis diagonalizing the sym-
metric bilinear form∇dHp(ep) and (λi)1≤i≤d are the
associated eigenvalues. Moreover, the processyδ satisfies
the following SDE:

dyδ(t) =
1

t
[yδ(t) − δ∇dHp(yδ(t), ·)♯]dt + δσdBt,

where∇dHp(y, ·)♯ is the dual vector of∇dHp(y, ·).

V. A PPLICATIONS: A NEW OS-HDR-CFAR
DETECTOR

With the notion of p-means, we could choose in
principle the “average matrix” stated in Section I to be
thep-mean of reflection coefficients. But considering the
heavily perturbed radar environment, the most appropri-
ate choice should be themedian, which is a prominent
ordered statistic estimator due to its robustness. In fact,
ordered statistic is a very useful tool used in Radar for
a long time to be robust against outliers on scalar data
from secondary data.

Now we are to apply the tools developed in the previ-
ous sections to build an Ordered-Statistic High Doppler
Resolution Constant False Alarm Rate (OS-HDR-CFAR)
detector (see [16], [17], [18] and [19]) jointly taking
into account the robustness of median matrix and high
Doppler resolution of regularized complex autoregressive
model. This new detection procedure is shown in Fig.
9. To be more precise, firstly, we use the regularized
Burg algorithm to compute the reflection coefficients of
each cell in the fixed direction. After that, for each cell
under test, we use the subgradient algorithm and the
Riemannian structure of Toeplitz covariance matrices to
compute the median of the reflection coefficients of the
reference cells around the cell under test. Finally, we
compute the Riemannian distance between the reflection
coefficients of the cell under test and the median reflec-
tion coefficients just obtained, if this distance is greater
than some threshold, then we can conclude that there is
a target at the location of the cell under test.

Fig. 9. OS-HDR-CFAR detection procedure.

The comparison of the classical CFAR detector and
the new OS-HDR-CFAR one is shown in Fig. 10.

Fig. 10. Comparison of classical CFAR detector and the new OS-
HDR-CFAR detector.

A. Test of OS-HDR-CFAR on simulated data

We proceed to show the advantage of the new detector
over the classical ones. For this purpose, we come back
to the example considered in Section II-C and work
within this context.

Since the autoregressive spectra are closely related
to the speed of targets, we first investigate the spectral
performance of the new detector. Our results on the
median spectra and the mean spectra are shown in Fig.
11. To be more precise, in order to obtain the median
spectra, for each cell ranging from the 8-th to the 193-
th, we use the subgradient algorithm in Section IV-B to
compute the median of the reflection coefficients of the
window (cf. Fig. 9) centered on this cell and consisting
of 15 reference cells around it without 4 guard cells.
After that, we apply (2) to each of the median reflection
coefficients to obtain a spectral functionS(·). As in
Section II-C, all these functions are visualized in the
picture at the top of Fig. 11, where thex axis represents
the cells and they axis represents the frequencyf in
(2), the spectra functionS(·) of each cell corresponds
to a colored vertical line and the valueS(f) for a
specified frequency is indicated by the colorimetric on
the right. Replacing the median by the mean in the above
procedure yields the mean spectra which is shown at the
bottom of Fig. 11.

Now we are ready to analyze these spectra. On the
one hand, it is easily seen that the median spectra are
robust against the second target but the mean spectra are
strongly affected by it as there is an evident distortion
at the location where the second target appears in the
picture of mean spectra. This phenomena well explains
the fact that the median is much more robust than the
mean when outliers appear (see e.g. [22] and [26]). As
the robustness is a desired property for detectors, the
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OS-HDR-CFAR detector is advantageous over the mean-
HDR-CFAR detector as far as robustness is concerned.
On the other hand, the three plateau in Fig. 2 are
simulated to represent transitions of clutter. After filtered
by median, the edges of clutter transitions are much
better marked and, in contrast, they are not well marked
after the mean filtering. This is another advantage of
the OS-HDR-CFAR detector over the mean-HDR-CFAR
detector when the targets are near the transitions of
clutter.

Fig. 11. Comparison of the median spectra and the mean spectra.

We finish our test on simulated data by showing the
detection performance of the three detectors: OS-HDR-
CFAR, Mean-HDR-CFAR and FFT-CFAR, the results
are shown in Fig. 12, in which thex axis stands for
the cells and they axis stands for the Riemannian
distance between the original reflection coefficients of
each cell and the median reflection coefficients of the
cell computed when producing the median spectra. It
is easily seen that the two inserted targets are much
better detected by the OS-HDR-CFAR detector than by
the other two detectors. One can also observe that the
performance of the classical FFT-CFAR detector is very
poor.

Fig. 12. Comparison of the detection quality. From top to bottom:
OS-HDR-CFAR, Mean-HDR-CFAR and FFT-CFAR.

B. Test of OS-HDR-CFAR on real data

We have also tested OS-HDR-CFAR on real recorded
ground Radar clutter with ingestion of synthetic slow
targets. In Fig. 13, we give ROC curves (see e.g. [23])
with Probability of detection versus Probability of false
alarm. We observe that OS-HDR-CFAR is better(Pd =
0.89) than OS-CFAR/Doppler-filters(Pd = 0.65) and
Mean-HDR-CFAR for arbitrarily fixedPfa.

VI. CONCLUSIONS

A new approach for high resolution Doppler pro-
cessing is developed. In order to achieve this method,
we have studied the Riemannian geometry of Toeplitz
covariance matrices and thep-means of probability
measure on Riemannian manifolds. Deterministic and
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Fig. 13. Comparison of ROC curves.

stochastic algorithms for computingp-means are given,
as well as their error estimates. Finally, it is shown that
this new processing method possesses many advantages
over the existing ones, especially for the cases when
targets are near and move slowly.
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Université de Poitiers, tel-00664188, version 1 (2011).


